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ABSTRACT

In this paper, we address self-supervised representation learning

from human skeletons for action recognition. Previous methods,

which usually learn feature presentations from a single reconstruc-

tion task, may come across the overfitting problem, and the features

are not generalizable for action recognition. Instead, we propose to

integrate multiple tasks to learn more general representations in a

self-supervised manner. To realize this goal, we integrate motion

prediction, jigsaw puzzle recognition, and contrastive learning to

learn skeleton features from different aspects. Skeleton dynamics

can be modeled through motion prediction by predicting the fu-

ture sequence. And temporal patterns, which are critical for action

recognition, are learned through solving jigsaw puzzles. We fur-

ther regularize the feature space by contrastive learning. Besides,

we explore different training strategies to utilize the knowledge

from self-supervised tasks for action recognition. We evaluate our

multi-task self-supervised learning approach with action classi-

fiers trained under different configurations, including unsuper-

vised, semi-supervised and fully-supervised settings. Our exper-

iments on the NW-UCLA, NTU RGB+D, and PKUMMD datasets

show remarkable performance for action recognition, demonstrat-

ing the superiority of our method in learning more discrimina-

tive and general features. Our project website is available at https:

//langlandslin.github.io/projects/MSL/.
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1 INTRODUCTION

Action recognition is a fundamental yet challenging problem in

computer vision research. Demands on action recognition are grow-

ing rapidly to facilitate the applications such as video surveillance,

human-computer interaction, video understanding.

In the past few years, many works [10, 38, 42] have been de-

veloped on recognition based on RGB videos and achieved many

significant results. However, processing RGB videos can be very

time-consuming and require a large storage space. Another data

modality, human skeletons, which represent a person by the 3D co-

ordinate positions of skeletal joints, draw much attention due to the

light-weight representations, the robustness to variations of view-

points, appearances, and surrounding distractions. Furthermore,

skeleton sequences can be regarded as a high-level representation

for human behavior, which attracts many researchers to study

skeleton-based action recognition [4, 29, 30, 43, 45, 46, 49]. Lever-

aging the merits of recurrent layers, many works [4, 30, 45, 46, 49]

build their framework based on Recurrent Neural Networks (RNN)

to model temporal evolution of different actions. Considering that

skeletons are naturally with graph structures, graph convolution

networks (GCN) are applied in skeleton-based action recognition

and show outstanding performance [29, 43]. However, these mod-

els are trained in a fully-supervised manner and require massive

labeled training examples. Besides, annotating training data can be

tedious and expensive. How to effectively learn feature represen-

tations from skeleton data with less annotation efforts remains a

concerned problem.

Recently, there are a few attempts [32, 48] exploring representa-

tion learning from unlabeled skeleton data. These models achieve

feature learning by an encoder-decoder structure, the input of which

is masked or original skeleton sequences, and the goal is to recon-

struct skeleton sequences from the encoded features. We argue
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Figure 1: Our proposed approach (MS2L) learns more gen-

eral and discriminative features benefiting from multiple

self-supervised tasks.

there are two potential issues in the previous work: (1) The skele-

ton reconstruction focuses more on detailed skeleton coordinates,

ignoring the high-level spatio-temporal information which is criti-

cal for action recognition. (2) Learning from a single task could lead

to overfitting for the specific task [26]. Therefore, the learned fea-

tures from previous works may not be discriminative and general

enough for recognizing skeleton sequences.

To address the aforementioned issues, we propose a novel self-

supervised learning method by optimizing multiple task simultane-

ously. As shown in Figure 1, we focus on combining different tasks

to make the representations more diverse and describe different

aspects of information. In our paper, we design three tasks, i.e., the

generation task for motion prediction, the classification task for

solving jigsaw puzzles, and contrastive learning based on skeleton

transformations. We aim to learn skeleton dynamics from motion

prediction, model temporal evolution through solving jigsaw puz-

zles, and further regularize the feature space by contrastive learning.

To fully utilize the knowledge learned from self-supervised learning

tasks and facilitate action recognition, we explore different training

strategies to train the action classifier. We provide comprehensive

evaluation and analysis in our experiments to demonstrate the

superiority of our proposed self-supervised learning approach.

In summary, our contributions include the following aspects:

• We propose a multi-task self-supervised learning framework

for skeleton based action recognition. We aim to learn com-

prehensive and general feature representations, benefiting

from motion prediction, jigsaw puzzle recognition and con-

trastive learning.

• To transfer the knowledge learned from self-supervised learn-

ing, we explore different training strategies, i.e., moving pre-

training and jointly training, towards better action recogni-

tion performance.

• Exhaustive experiments on different datasets validate the

capacity of our representations learned by self-supervised

tasks, which show superiority in action recognition under

different configurations, including the unsupervised, semi

supervised and fully-supervised learning settings, as well as

transfer learning.

The rest of the paper is organized as follows: Sec. 2 reviews

previous works on self-supervised learning and skeleton-based

action recognition. Sec. 3 introduces our proposed self-supervised

learning approach and training strategies in detail. We present our

experiment results and analysis in Sec. 4. Concluding remarks are

given in Sec. 5.

2 RELATEDWORK

In this section, we first introduce related work on self-supervised

learning, and then give a brief review on skeleton-based action

recognition.

2.1 Self-Supervised Learning

Self-supervised learning aims to learn feature representations from

a huge amount of unlabelled data. It has been verified that self-

supervised pre-training can help supervised learning [6] and it

has a variety of applications in a broad range of computer vision

topics [14, 25]. Self-supervised learning is usually achieved by pre-

text tasks, which utilize easy-to-obtain automatically generated

supervision without human expensive annotation.

Many efforts have been devoted to designing pretext tasks to

learn image representations from unlabelled image data [3, 8, 23,

24, 41, 47]. Doersh et al. [3] proposed to train a convolutional neu-

ral network to reorder perturbed image patches. Following the

idea, the works in [23, 24, 41] predict a permutation of multiple

shuffled image patches to better model spatial relationships, which

are called jigsaw puzzles. There are also other pretext tasks, such

as colorizing grayscale images [47] or predicting image rotation

angles [8, 44]. More recently, Chen et al. [1] proposed a visual repre-

sentation learning method with contrastive learning for contrastive

prediction task, which forces on feature representation between

positive pairs more similar than those between negative ones.

Recent studies also pay attention to representation learning for

sequential data such as videos. A common way is to predict the

video frame orders [7, 17, 21] to learn the temporal patterns. To

further learn spatio-temporal representations, Vondrick et al. [36]

proposed a spatio-temporal 3D convolution integrated with a gen-

erative adversarial network. Kim et al. [16] tackled the problem

by solving space-time cubic puzzles inspired by jigsaw puzzles in

the image domain. A more recent work [37] improves the spatio-

temporal feature representations in a finer granularity by regressing

motion and appearance statics along spatial and temporal dimen-

sions. In our work, we use multiple tasks to learn spatial and tempo-

ral patterns, respectively. Besides, we apply the contrastive learning

to constrain the feature space by sampling positive and negative

pairs.

2.2 Skeleton-Based Action Recognition

Early skeleton-based action recognition methods are generally

based on hand-crafted features by utilizing the geometry rela-

tionships of skeletal joints [9, 20, 34, 35, 38]. Recent methods for

skeleton-based action recognition pay more attention to utilizing

deep networks as their basic models. Benefiting from the merits

of recurrent layers for sequential data, Du et al. [5] proposed a

pioneer work based on a hierarchical recurrent neural network.

Zhu et al. [49] explored the co-occurrence of joints by introduc-

ing a group sparsity constraint on the recurrent neural network.

To more adaptively learn the co-occurrence patterns of skeletal
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Figure 2: The structure of our network. (a) Encoder. (b) Multi-task heads. (c) Classifier for action recognition. We use yel-

low, blue and grey arrows to indicate the pipeline for motion prediction, jigsaw puzzle recognition and contrastive learning,

respectively. Action recognition is achieved with the red pipeline.

joints, attention-based methods are proposed to automatically se-

lect important skeletal joints [30, 31, 46] and video frames [30, 31].

However, recurrent neural networks always suffer from gradient

vanishing [12], which may cause optimization problems. Then, con-

volutional neural networks attract more attention for the skeleton-

based action recognition. To adapt the input for convolutional neu-

ral network, a new representation for 3D skeleton data is proposed

in [15], which converts the problem of action recognition to im-

age classification. To better model the structural information of

the skeleton data, Yan et al. [43] employed graph convolution net-

works to represent skeleton data on graphs. To make the graph

representation more flexible, attention mechanisms are applied

in [28, 29] to adaptively capture discriminative features based on

spatial configurations and temporal dynamics.

Though these models have achieved excellent performance on

skeleton-based action recognition, they heavily rely on expensive

annotation of action sequences. To get rid of action labeling, Zheng

et al. [48] proposed an unsupervised framework using an encoder-

decoder structure to re-generate the masked input sequence. To

force the encoder to learn a more informative representation, a

more recent work [32] is proposed to improve the encoder and

weaken the decoder. However, the models in [32, 48] are learned

from a single task, i.e., skeleton sequence reconstruction, leading

to limited feature representation ability. To learn more intrinsic

features, our work introduces multiple self-supervised tasks to

further enhance feature representation learning without the help

of human annotations.

3 MULTIPLE SELF-SUPERVISED LEARNING
(MS2L)

In this section, we present our self-supervised learning techniques.

We first provide a general description of our approach. Then, we

introduce specific instantiations of our approach.

3.1 Preliminaries

We focus on the self-supervised feature learning for skeleton data.

Then, we apply the learned features on skeleton-based action recog-

nition. Basically, our overall framework consists of an encoder 𝑓 (·)
to extract features from skeleton data, and an action classifier 𝐶 (·)
to assign action labels to the input sequence. Supposing the 𝑖𝑡ℎ

skeleton sequence is X𝑖 = {x𝑖1, . . . , x
𝑖
𝑇 }, where x𝑖𝑡 represents the

𝑡𝑡ℎ frame. Then, the result for action recognition is 𝑝𝑖 = 𝐶
(
𝑓
(
X𝑖 ) ) ,

where 𝑝𝑖 is the probability distribution over all the action categories.
In our work, our goal is to learn powerful feature representations

from the encoder 𝑓 (·) with self-supervised learning. Besides, we

explore different settings and strategies to train the action classifier

𝐶 (·) with the learned features.

3.2 Multiple Self-Supervised Tasks

We now describe our self-supervised learning techniques. To learn

generalizable and robust skeleton features, we consider multiple

self-supervised tasks, i.e., the generation task for motion predic-

tion, the classification task for solving video jigsaw puzzles, and

contrastive learning based on skeleton transformations. We aim

to model skeleton dynamics through motion prediction and learn

temporal patterns by solving jigsaw puzzles. Finally, we utilize con-

trastive learning to further regularize the feature space for more

inherent representations. Figure 2 shows the pipeline of our model.

The tasks share the encoder 𝑓 (·) and adopt different heads for dif-

ferent objectives. Next, we present these self-supervised tasks in

detail, respectively.

Motion Prediction. Given the past motion sequence, the motion

prediction task focuses on forecasting themost likely future poses of

a person by modeling skeleton dynamics. Inspired by Seq2Seq [33],

we apply an encoder-decoder with recurrent layers to achieve the

task. The encoder 𝑓 (·) reads in parts of the input sequences and

extracts representations from inputs. The decoder ℎ𝑚 (·), which is

shown as a reconstruction head in Figure 2, receives the learned

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2492



t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

t=1 t=2 t=3t=7 t=8 t=9t=4 t=5 t=6

Figure 3: Our method of skeleton jigsaw puzzles. Different

color means different segments and we shuffle these seg-

ments randomly to create various permutations.

representations and generates sequences to reconstruct the whole

input sequences. To avoid overfitting, we augment the original

data by injecting random noises into the input sequences. Those

random noises are sampled from a Gaussian distribution to avoid

the network remember the input sequences.

To formulate motion prediction, recall that the original skele-

ton sequence is X𝑖 = {x𝑖1, . . . , x
𝑖
𝑇 }, and the masked sequence is

X𝑖
𝑚 = {x𝑖1, . . . , x

𝑖
𝑇 ′ |𝑇

′ < 𝑇 }. Then, we inject random noise into

the input sequence X𝑖
𝑚 to get the noisy input sequence X̃𝑖

𝑚 . The

future motion sequence is predicted by X̂𝑖
𝑚 = ℎ𝑚

(
𝑓
(
X̃𝑖
𝑚

))
, where

X̂𝑖
𝑚 = {x̂𝑖𝑇 ′+1

, . . . , x̂𝑖𝑇 }, we use mean square error (MSE) to estimate

the parameters of the network as follows:

L𝑚 =
𝑁∑
𝑖=1

𝑇∑
𝑡=𝑇 ′+1

‖x̂𝑖𝑡 − x𝑖𝑡 ‖
2
2 , (1)

where 𝑁 is the batch size.

Jigsaw Puzzle. Solving the problem of jigsaw puzzles aims to pre-

dict the correct permutation from the shuffled sequences. In our

work, we apply jigsaw puzzles for skeleton sequences in the tem-

poral domain so the network is able to learn temporal patterns. To

generate puzzles from the skeleton sequences, each sequence is

divided into 𝑃 segments equally and there are 𝑇
𝑃 frames in a seg-

ment. We shuffle these segments randomly and there are P! ways to

shuffle them. The network is trained to predict the correct order of

the shuffled segments. An example of jigsaw puzzle can be viewed

in Figure 3.

With the shared encoder 𝑓 (·), we apply a classification headℎ 𝑗 (·)
to obtain the classification results to recognize video jigsaw puzzles.

Specifically, we use an MLP as our classification head. The task is

trained with the loss L 𝑗 , which is formulated as cross entropy loss

for classification as follows:

L 𝑗 = −

𝑁∑
𝑖=1

𝑦𝑖 logℎ 𝑗 (𝑓 (X
𝑖
𝑗 )), (2)

where X𝑖
𝑗 is the shuffled sequence of original data X𝑖 and 𝑦𝑖 is

one-hot vector indicating the action label.

Contrastive Learning. To further regularize the feature learning

and encourage the network to learn inherent representations, we

adopt contrastive learning by mapping the transformed data into

a common feature space. Inspired by SimCLR [1], our network

learns representations by maximizing cosine similarity between

transformed modalities of the same original data. For each origi-

nal sample, we consider multiple transformations. Specifically, we

randomly sample 𝑁 examples and apply (𝑀 − 1) kinds of trans-

formation operators to obtain 𝑁𝑀 samples. Then for each original

sample, we can construct (M-1) positive pairs with its transformed

samples, and construct negative pairs with other samples.

A projection head ℎ𝑐 (·) is designed to map the encoded se-

quences into the feature space. Let z1, z2, . . . , z𝑁𝑀 be the feature

extracted from the output of encoder 𝑓 (·), for any integer 𝑘 from

1 to 𝑁 , z(𝑘−1)𝑀+1 is the original data and the sequences from

z(𝑘−1)𝑀+2 to z𝑘𝑀 are the transformed samples from the original

sequence z(𝑘−1)𝑀+1. z̄𝑖 =
1
𝑀

∑𝑖𝑀
𝑗=(𝑖−1)𝑀+1

z𝑗 denotes the mean fea-

tures of original and transformed data for z(𝑖−1)𝑀+1. Similar to

recent works [1], we use 𝑠𝑖𝑚(x, y) = x𝑇 y/‖x‖2‖y‖2 define the co-

sine similarity between x and y. We define the loss function as

follows:

L𝑐 = −

𝑀𝑁∑
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(z𝑖 , z̄𝑘 ))∑𝑁
𝑗=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(z𝑖 , z̄𝑗 ))

, (3)

where 𝑘 is � 𝑖
𝑀 �. This extension can adapt to an arbitrary number of

transformation operators and gain a better constraint in the feature

space. In practice, we adopt two transformation operators in our

work. One is temporal masking, and the other is temporal jigsaw,

which are actually the input of motion prediction and jigsaw puzzle

recognition, respectively.

3.3 Training for Action Recognition

With the feature representations from the encoder 𝑓 (·), we build
an action classifier 𝐶 (·) on top of the encoder to achieve action

recognition. We consider different settings to train the classifiers,

including the unsupervised setting, semi-supervised setting and

fully-supervised setting. In the unsupervised setting, the encoder is

trained only with self-supervised tasks introduced above, and then

we train the action classifier independently by optimizing the cross-

entropy loss with the encoder fixed. In the semi-supervised and

fully-supervised settings, we are allowed to train the encoder and

classifier jointly. Here, we explore two different training strategies

for the semi-supervised and fully-supervised settings towards better

performance for action recognition.

MovingPretraining Strategy.The previous pretrainingmethod [48]

initializes the encoder with learned weights and finetunes the whole

network. However, that may cause severe destruction of the ex-

tracted features learned from self-supervised tasks. To address the

issue, we adopt a novel pretraining scheme, using a linear regular-

ization mechanism to adjust the weights between self-supervised

tasks and the action recognition task. This can help stabilize the

training process when switching between different tasks.

Specifically, let L𝑐𝑙𝑠 be a standard cross-entropy loss for action

recognition, L𝑠𝑒𝑙 𝑓 = L𝑚 + L 𝑗 + L𝑐 is the sum of self-supervised

learning losses from motion prediction, jigsaw puzzle recognition

and contrastive learning. When we initialize the encoder with the

weights trained by self-supervised tasks, our network would take

several epochs to perform moving pretrained supervised learning,

during which we train the network with self-supervised tasks and

supervised learning tasks jointly with a changeable parameter to
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adjust the proportion of two tasks with a loss as follows:

L𝑚𝑜𝑣𝑖𝑛𝑔 = 𝜃L𝑐𝑙𝑠 + (1 − 𝜃 )L𝑠𝑒𝑙 𝑓 , (4)

where 𝜃 increases from 0 to 1 linearly and is fixed at 1 finally.

Jointly Training Strategy. Another alternative to train for ac-

tion recognition is to optimize the networks jointly from scratch.

Training data are fed into the encoder to extract features and then

into their corresponding heads and the action classifier. The loss

function can be defined as follows:

L 𝑗𝑜𝑖𝑛𝑡 = L𝑐𝑙𝑠 + 𝜔L𝑠𝑒𝑙 𝑓 , (5)

where 𝜔 is a non-negative scalar weight to balance the two terms.

In practice, 𝜔 is set as 1. We will show the action recognition per-

formance with different training strategies and give an analysis on

that in the experiments.

4 EXPERIMENT RESULTS

For evaluation, we conduct our experiments on the following three

datasets: the North-Western UCLA dataset [39], the NTU RGB+D

dataset [27], and the PKUMMD dataset [18]. Our goal is to evaluate

whether our feature encoder 𝑓 (·) trained with the proposed self-

supervised learning approach can generate good feature represen-

tations for action recognition. Thus, we consider action classifiers

trained under different settings (i.e., unsupervised, self-supervised,

and fully supervised). We also apply our approach to transfer learn-

ing. Finally, we give an ablation study to illustrate the effectiveness

of each component in our work.

4.1 Dataset and Settings

North-WesternUCLA (NW-UCLA) [39] This dataset is captured

by Kinect v1 and contains 1494 videos in 10 action categories per-

formed by 10 subjects. Each body has 20 skeleton joints. There

are three views of each action and we use the first two views for

training and the third view for testing, which contains 1, 018 videos
and 462 videos, respectively.

NTU RGB+D Dataset (NTU) [27] This is a large scale dataset

including 56, 578 videos with 60 action labels and 25 joints for each

body, including interactions with pairs and individual activities. We

test our method under the cross-subject protocol, that the training

and testing are split by different subjects, leading to 40, 091 videos
for training and 16, 487 videos for testing.
PKU Multi-Modality Dataset (PKUMMD) [18] PKU-MMD is

a new large scale benchmark for continuous multi-modality 3D

human action understanding and covers a wide range of complex

human activities with well annotated information. It contains al-

most 20, 000 action instances and 5.4 million frames in 52 action

categories. Each sample consists of 25 body joints. PKUMMD con-

sists of two subsets, i.e., part I and part II. Part I is an easier version

for action recognition, while part II is more challenging with more

skeleton noise caused by the large view variation. We conduct

experiments under the cross subject protocol on the two subsets,

respectively.

To train the network, all the skeleton sequences are temporally

down-sampled to 200 frames. For the motion prediction, we add

random noise to the former 50 frames and mask the latter 150

frames. For the skeleton jigsaw task, we divide the sequence into 3

segments so there are 6 ways to shuffle the sub-sequences.

The architecture is set as four parts. First, the shared encoder

𝑓 (·) is a 1-layer bidirectional GRU with 30 units in each layer. The

reconstruction head ℎ𝑚 (·) for motion prediction, the classification

head ℎ 𝑗 (·) for solving jigsaw puzzles, and the projection head ℎ𝑐 (·)
for contrastive learning are 1 FC layer (𝑑𝑖𝑚 = 60). The classifier𝐶 (·)
includes a 1-layer unidirectional GRUwith 60 units to be compatible

with the dimensions of the output of the encoder 𝑓 (·) and an MLP

for recognition. All networks are initialized with a random uniform

distribution.

To optimize our network, Adam optimizer [22] is used and the

learning rate declines from 0.01 to 0.0001 with 0.1 decay rate for

every 100 iterations. We train the network on one NVIDIA Titan

X GPU with a batch size of 32 for NW-UCLA and 128 for NTU

RGB+D, PKUMMD datasets, respectively.

4.2 Evaluation and Comparison

In this section, we explore whether the representations learned by

our multi-task self-supervised model (MS2L) are meaningful for

action recognition. To give a comprehensive and thorough evalua-

tion, we conduct experiments under different settings, including

unsupervised, semi-supervised and fully supervised approaches.

We also show the comparison results with other state-of-the-art

methods, respectively.

Unsupervised Approaches. In the unsupervised setting, the fea-

ture extractor, i.e., the encoder 𝑓 (·), is independently trained with

some pretext tasks. Then, the feature representation is evaluated by

classifiers. In our experiments, we evaluate feature representations

with a linear classifier, which is trained on top of the frozen encoder

𝑓 (·), and action recognition accuracy is used as a measurement for

representation quality. We test the following configurations:

• MS2L Rand-Unsupervised (MS2L Rand-U): We only train

the linear classifier and freeze the encoder 𝑓 (·) which is randomly

initialized. We regard this configuration as our baseline.

• LongT GAN [48]: This work designs a conditional skeleton

inpainting architecture for learning a fix-dimensional representa-

tion with additional adversarial training strategies. Specifically, this

model uses the feature of the original data and randomly masked

skeleton data to recover the original data. And the trained weights

of the encoder 𝑓 (·) can be used for recognition. We construct the

network according to the paper.

•MS2L: It is our full system, where the encoder 𝑓 (·) is trained
by MS2L independently, then we train the linear classifier with

encoder 𝑓 (·) fixed.
In Table 1, we show the results of the baseline (MS2L Rand-U), the

prior work LongT GAN, and the proposedMS2L. As we can see, our

approach achieves better performance over random baseline and

LongT GAN. This improvement verifies that our methods can force

the network to extractmore effective features. It is worth noting that

the feature dimension from our encoder 𝑓 (·) is 60 while that from
LongT GAN is 800. Therefore, we achieve better performance with

much more compact feature representations compared to LongT

GAN.

Semi-Supervised Approaches. In semi-supervised learning, the

training process utilizes both labeled data and unlabeled data. Gen-

erally, the encoder 𝑓 (·) is pretrained with some pretext tasks with

unlabeled data, then jointly trained with the classifier 𝐶 (·) with
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Table 1: Comparison of action recognition results with unsupervised learning approaches.

Models NW-UCLA PKUMMD part I PKUMMD part II NTU

MS2L Rand-U 60.61 62.80 20.70 41.10

LongT GAN 74.30 67.70 25.95 52.14

MS2L (Our) 76.81 64.86 27.63 52.55

Table 2: Comparison of action recognition results with semi-supervised learning approaches.

Models NW-UCLA PKUMMD part I PKUMMD part II NTU

1% labeled data:

MS2L Rand-SS 17.09 34.46 11.79 32.18

LongT GAN 18.26 35.78 12.37 35.22

MS2L (Our) 21.28 36.42 13.03 33.10

10% labeled data:

MS2L Rand-SS 58.63 67.95 22.81 62.49

LongT GAN 59.94 69.51 25.71 62.03

MS2L (Our) 60.45 70.30 26.10 65.17

labeled data. In our experiments, we respectively sample 1% and

10% data randomly from the training set as labeled data and regard

the rest as unlabeled data.

•MS2LRand-Semi supervised (MS2LRand-SS): The encoder

𝑓 (·) is initialized with random weights. Then we finetune all the

weights of the network with labeled data.

• LongT GAN [48]: To apply this work in semi-supervised

learning, we train the weights of GAN with unlabeled data and then

finetune all the weights with labeled data.

•MS2L: We train our full system in the semi-supervised setting.

We use both labeled data and unlabeled data to independently train

the encoder 𝑓 (·) with MS2L. Then we train the classifier 𝐶 (·) and
finetune the encoder 𝑓 (·) with labeled data jointly.

From Table 2, we can notice that only with a small subsets of the

datasets, our method can always improve the baseline considerably

and performs better than LongT GAN.

Supervised Approaches. In the supervised setting, the encoder

𝑓 (·) is pretrained by pretext tasks, and then the encoder 𝑓 (·) and
classifier𝐶 (·) are jointly trained with the full training data. We first

evaluate our proposed approach in the supervised setting with dif-

ferent training strategies introduced in Sec. 3.2. The configurations

are as follows:

•MS2L Rand-Supervised (MS2L Rand-S): Our baseline struc-

ture initializes the weights of the encoder 𝑓 (·) randomly and learns

them with action labels jointly with the classifier 𝐶 (·).
•MS2L Pretrain: We initialize the encoder 𝑓 (·) with the learned

weights from self-supervised tasks and then learn the classifier𝐶 (·)
for action recognition with encoder 𝑓 (·) fixed.

• MS2L Moving: We train the network with moving strategy,

introduced in Sec.3.2. The encoder 𝑓 (·) is pretrained with pretext

tasks. Then we train the encoder 𝑓 (·) and classifier 𝐶 (·) jointly by

switching the pretext tasks and classification task gradually.

•MS2L Jointly: This strategy requires to train the model with

self-supervised tasks and supervised task at the same time. We

Table 3: Comparison of action recognition results with su-

pervised learning approaches on the NW-UCLA dataset.

Models NW-UCLA

HBRNN-L [5] 78.50

SK-CNN [19] 86.10

VA-LSTM [45] 70.71

Denoised-LSTM [2] 80.30

MS2L Rand-S 83.86

MS2L Pretrain (Our) 85.26

MS2L Moving (Our) 85.32

MS2L Jointly (Our) 86.75

train the network from scratch with both self-supervised tasks and

supervised task with fixed 𝜔 in Eq. 5.

The results on the NW-UCLA, NTU and PKUMMD datasets are

shown in Table 3, 4, 5, respectively. We improve the performance

from 83.86% to 85.32% and 86.75% bymoving pretraining and jointly

training on NW-UCLA. And on larger datasets, the performance

improves from 83.49% to 84.43% and 85.17% on PKUMMD part I and

from 40.97% to 42.57% and 45.70% on PKUMMD part II by moving

pretraining and jointly training, respectively. The best performance

also improves from 78.44% to 78.56% on NTU dataset.

Compared to the baseline, our self-supervised learning method

achieves significant improvement. Using the moving pretrained

strategy helps to make the network change from self-supervised

tasks to supervised task gradually and remember the prior knowl-

edge learned by self-supervised tasks. It is also observed that jointly

training achieves more gain than moving pretraining strategy. We

explain it as that jointly training can force the network to extract

features for different tasks, so the features can be relatively more

general and contain richer information.
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Table 4: Comparison of action recognition results with su-

pervised learning approaches on the PKUMMD dataset.

Models Part I Part II

ST-GCN [43] 84.07 48.20

VA-LSTM 84.10 50.00

MS2L Rand-S 83.49 40.97

MS2L Pretrain (Our) 83.46 42.45

MS2L Moving (Our) 84.43 42.57

MS2L Jointly (Our) 85.17 45.70

Table 5: Comparison of action recognition results with su-

pervised learning approaches on the NTU dataset.

Models NTU

LSTM [13] 71.90

BLSTM 71.40

STA-LSTM [31] 73.40

TPN [40] 75.30

ST-GCN [43] 81.50

MS2L Rand-S 78.44

MS2L Pretrain (Our) 78.33

MS2L Moving (Our) 78.46

MS2L Jointly (Our) 78.56

Compared with the state-of-the-art, our model performs better

on NW-UCLA and PKUMMD part I datasets and can be competitive

to the previous methods on PKUMMD part II and NTU datasets.

Transfer Learning Performance. To further evaluate whether

the proposed MS2L is able to gain knowledge to related tasks, we

investigate the transfer learning performance of our model.

Generally, the representations learned from large scale data more

generalizable, as illustrated in [11]. Therefore, in our experiments,

we regard the NTU and PKUMMD part I as source datasets and

PKUMMD part II as the target dataset. We pretrain our model

with the source datasets respectively and then fine-tune the whole

network on the target dataset. We evaluate transfer learning perfor-

mance using the accuracy of action recognition on PKUMMD part

II and compare the results with those trained with full supervision

from PKUMMD part II and LongT GAN. The configurations are as

follows:

• MS2L Rand-Transfer (MS2L Rand-T): We initialize the net-

work randomly and then finetune the whole weights from scratch

on PKUMMD part II.

• LongT GAN [48]: To perform transfer learning with LongT

GAN, we pretrain the generator on the source dataset and then

train the entire network on the target dataset.

• MS2L: The encoder 𝑓 (·) is trained by self-supervised tasks

independently on source datasets, then we train the full system on

the target dataset.

Table 6 shows the transfer learning results. Our self-supervised

model outperforms the supervision baseline, improving the result

Table 6: Comparison of the transfer learning performance.

Models Accuracy on PKUMMD part II

MS2L Rand-T 40.97

PKUMMD part I:

LongT GAN 43.61

MS2L (Our) 44.14

NTU:

LongT GAN 44.83

MS2L (Our) 45.81

Table 7: Comparison of combinations of self-supervised

tasks.

Method NW-UCLA

MS2L Rand-S 83.86

Prediction 84.88

Jigsaw 84.11

Contrastive 85.47

Prediction & Jigsaw 84.90

Contrastive & Jigsaw 84.82

Prediction & Contrastive 85.71

Prediction & Jigsaw & Contrastive 86.75

from 40.97% to 44.14% when pretrained on PKUMMD part I and

45.81% when pretrained on NTU, respectively.

Compared with LongT GAN, our model can also show superiority.

LongT GAN employs adversarial training strategies to reconstruct

the whole skeleton data. Therefore, the network is trained to focus

more on the details of skeletal joints. The domain gap in detailed

skeleton settings of different datasets makes it hard to transfer

the knowledge from the source dataset to the target dataset. Our

proposed method, however, maps the skeleton data from different

datasets to a common feature space with contrastive learning, and

then achieve high-level domain knowledge transfer. The results in

Table 6 illustrate the superiority of our proposed approach.

4.3 Ablation Study

Next, we conduct ablation experiments to give more analysis of our

proposed approach. All the ablation studies are performed on the

NW-UCLA dataset.

Analysis of Self-Supervised Tasks. In this part, we explore the

role that each self-supervised task plays in the learning process. The

baseline is training the classifier𝐶 (·) independently and the encoder
𝑓 (·) is with random weights. For evaluating the self-supervised

tasks, we pretrain the encoder 𝑓 (·) and then finetune the overall

network.

• Motion Prediction: There are two ways to conduct motion

prediction, i.e., temporal motion prediction and spatial motion pre-

diction. For the temporal motion prediction, our model generates

future skeleton data conditioned on the past skeleton data, while
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the spatial motion prediction reads in the corrupted input sequence,

of which a number parts of human key-points are masked and set

to be zero, and we predict the masked regions. We pretrain the

encoder 𝑓 (·) with motion prediction and then finetune the whole

network jointly. Table 8 shows the results of temporal and spatial

motion prediction, respectively. We observe that the spatial masked

data reconstruction task does not improve and even hurts their

performance. We analyze it may be caused by two reasons. On the

one hand, a spatially masked skeleton sequence may lose critical

information to infer the unknown skeleton regions. Therefore, it is

more difficult to predict the spatial coordinates. On the other hand,

we apply GRU units as our backbone, which explicitly learn tem-

poral patterns but ignore spatial modeling. With a more powerful

backbone, such as a graphic model which explicitly models spa-

tial relations, we may boost the performance from spatial motion

prediction. We leave it as our future work. In our model, we use

temporal motion prediction as one of the self-supervised tasks.

• Jigsaw Puzzles: We explore two different methods to shuffle

the skeleton data to perform jigsaw puzzle recognition, i.e., temporal

jigsaw puzzle recognition, and spatial jigsaw puzzle recognition.

Temporal jigsaw puzzle shuffles the original data temporally and

our goal is to predict the correct order of shuffled sequences , while

spatial jigsaw puzzle shuffles the order of key-points which are

divided into five parts, namely four limbs and a trunk, and our

goal is to recognize each part. Also, the tasks are trained jointly

and evaluated in classification accuracy. We show the results in

Table 7, utilizing the spatial information harms the performance

of the recognition task. It is mainly because the spatial jigsaw is

much more difficult to predict since there are more permutations

than a temporal jigsaw. In our model, we choose temporal jigsaw

puzzle recognition as one of the self-supervised tasks.

•Contrastive Learning:We evaluate different combinations of

transformation operators for contrastive learning. In Table 8, we can

observe that when we use spatial transformation operators always

hurt recognition performance, whereas temporal transformation

operators improve performance better. It is illustrated that the

features from spatially masked skeletons and spatially shuffled

skeletal joints lose much information to establish mapping with

the features from original skeletons.

Table 7 shows the results from a single self-supervised task as

well as their combinations. When applying a single self-supervised

task, we can observe that the contrastive learning task always out-

performs over the other two tasks. Contrastive learning aims to

learn a common space between the original and transformed skele-

ton data. Therefore, the network is encouraged to learn more in-

herent feature representations. When two different self-supervised

tasks are jointly optimized, they can enhance the performance be-

cause of the stronger restriction to the representation space. And

using all the three tasks achieves the best performance. We explain

it as the features extracted by the tasks jointly keep more aspects of

information from the original sequences. That means the encoder

𝑓 (·) can extract more general features.

Training Strategy.Nowwe provide some insights into ourmoving

pretraining strategy. Figure 4 shows the sum of all the losses of self-

supervised tasks with different training strategies. Figure 4(a) shows

the losses when we pre-train the self-supervised tasks and fine-

tune the overall network for action recognition. We can observe

Table 8: Analysis of self-supervised tasks. (P means Predic-

tion; J means Jigsaw)

Method NW-UCLA

MS2L Rand-S 83.86

Temporal motion prediction 84.88

Spatial motion prediction 81.11

Temporal jigsaw puzzle recognition 84.11

Spatial jigsaw puzzle recognition 81.62

Contrastive(Spatial P + Temporal J) 81.35

Contrastive(Temporal P + Spatial J) 82.84

Contrastive(Spatial P + Spatial J) 82.45

Contrastive(Temporal P + Temporal J) 85.47

that when we begin to finetune the overall network by jointly

training the encoder 𝑓 (·) and the classifier 𝐶 (·), the losses of self-
supervised learning increase sharply, whichmay destroy the feature

representations learned from the self-supervised tasks. Figure 4(b)

shows the losses of self-supervised tasks applied by our moving

method. The smooth training loss curve illustrates the network

is able to learn weights for action recognition while keeping the

feature representations learned from the self-supervised tasks. The

better results in Tables 3, 4, 5 confirm the effectiveness of moving

pretraining.

(a) MS2L Pretrain (b) MS2L Moving

Figure 4: Loss curves of MS2L Pretrain and MS2L Moving, re-

spectively.

5 CONCLUSION

In this work, we propose a self-supervised learning approach for

skeleton-based action recognition. To deal with the overfitting prob-

lem of learning skeleton representations from a single reconstruc-

tion task, we integrate multiple tasks to learn more general features.

We apply motion prediction to model skeleton dynamics and jig-

saw puzzle recognition to model temporal patterns, respectively.

Besides, contrastive learning is adopted to further regularize the

feature space and help learn intrinsic features. With comprehen-

sive and thorough experiments on three datasets, we can show

our model is a powerful feature extractor which outperforms the

baseline significantly.
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